SEMICONTINUITY OF METRIC PROJECTIONS IN $c_0$-DIRECT SUMS
نویسندگان
چکیده
منابع مشابه
Semi-continuity of Metric Projections in ∞-direct Sums
Let Y be a proximinal subspace of finite codimension of c0. We show that Y is proximinal in ∞ and the metric projection from ∞ onto Y is Hausdorff metric continuous. In particular, this implies that the metric projection from ∞ onto Y is both lower Hausdorff semi-continuous and upper Hausdorff semi-continuous.
متن کاملLower Semicontinuity Concepts, Continuous Selections, and Set Valued Metric Projections
A number of semicontinuity concepts and the relations between them are discussed. Characterizations are given for when the (set-valued) metric projection P M onto a proximinal subspace M of a normed linear space X is approximate lower semicontinuous or 2-lower semicontinuous. A geometric characterization is given of those normed linear spaces X such that the metric projection onto every one-dim...
متن کاملUniquely Remotal Sets in $c_0$-sums and $ell^infty$-sums of Fuzzy Normed Spaces
Let $(X, N)$ be a fuzzy normed space and $A$ be a fuzzy boundedsubset of $X$. We define fuzzy $ell^infty$-sums and fuzzy $c_0$-sums offuzzy normed spaces. Then we will show that in these spaces, all fuzzyuniquely remotal sets are singletons.
متن کاملUltra Bessel sequences in direct sums of Hilbert spaces
In this paper, we establish some new results in ultra Bessel sequences and ultra Bessel sequences of subspaces. Also, we investigate ultra Bessel sequences in direct sums of Hilbert spaces. <span style="font-family: NimbusRomNo9L-Regu; font-size: 11pt; color: #000000; font-s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2006
ISSN: 1027-5487
DOI: 10.11650/twjm/1500557300